
A novel method of labelling DNA bases for sequencing
18. 05. 2021
An international research team headed by Michal Hocek of the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague) and Charles University and Ciara K. O’Sullivan of Universitat Rovira i Virgili (URV) in Spain have developed a novel method for labelling DNA, which in the future can be used for sequencing DNA by means of electrochemical detection. The researchers presented their results in the Journal of the American Chemical Society.
A DNA molecule comprises four basic building blocks, nucleotides. The genetic information carried within the molecule is determined by the order of the nucleotides. Knowledge of the order of these building blocks, which is known as the DNA sequence, is necessary for disease diagnostics and forensic DNA analysis, for example. Despite the great progress in recent years, the current DNA sequencing methods, typically based on fluorescent labelling, are still time-consuming and relatively expensive techniques, which have some limitations. Therefore, scientists are intensively searching for new approaches to simplify and accelerate sequencing.
One promising approach is the use of electrochemical detection and so-called redox labels, which are compounds that can be oxidized or reduced on electrodes. A multidisciplinary team of researchers from IOCB Prague, URV, the Faculty of Science of Charles University, the Polish Academy of Sciences, and the Institute of Biophysics of the Czech Academy of Sciences, with students David Kodr and Cansu Pinar Yenice as first authors, has now succeeded in designing and synthesizing artificial nucleotides with special attached redox labels that can be oxidized on a gold or carbon electrode at a specific potential to produce a measurable and analytically useful signal. These labels are carboranes, cage structures composed of boron and carbon atoms, into which other metal atoms can be incorporated, such as iron or cobalt, affecting their resulting electrochemical properties.
Read more here.
Read also
- Horizontal mitochondrial transfer is a key process in tumor biology
- Scientists on track of finding a treatment for autoimmune hair loss
- LASER-PRO: Linking Science and Industry to Shape Europe’s High-Tech Future
- Martian mud flows: a little salt makes a big difference
- Violent dance of massive gas giant planets
- Scientists discover new species of rare fungi thanks to arsenic analysis
- MICAL1 plays a key role in cellular dynamics by controlling the cytoskeleton
- Groundbreaking study maps brain’s recovery process after stroke
- IOCB Prague expands overseas, opens a new branch in Boston
- Speedier and more effective treatment of serious illnesses
Contacts for Media
Markéta Růžičková
Public Relations Manager
+420 777 970 812
Eliška Zvolánková
+420 739 535 007
Martina Spěváčková
+420 733 697 112