Zahlavi

ERC Synergy grant podpoří výzkum Ondřeje Nováka z Akademie věd ČR

05. 11. 2024

S trochou nadsázky můžeme rostlinné fytohormony, jakým je auxin, přirovnat k poslíčkům. Přenášejí totiž zprávy z jedné části do jiné, a upozorňují tak třeba na změnu vnějších podmínek. Právě roli auxinu při růstu a tvarování rostlin zkoumají vědci a vědkyně v projektu STARMORPH, který získal Synergy grant Evropské výzkumné rady (ERC) a s ním podporu 10 milionů eur. Podílí se na něm i Ondřej Novák z Přírodovědecké fakulty UP v Olomouci a Ústavu experimentální botaniky AV ČR.

Na šestiletém výzkumu bude Ondřej Novák spolupracovat s koordinátorkou projektu Stéphanií Robert ze Švédské univerzity zemědělských věd, Jürgenem Kleine-Vehnem z Freiburské univerzity a Alexanderem Jonesem z Cambridgeské univerzity. Poznatky můžou vést ke zvýšení výnosů zemědělských plodin, což by zlepšilo potravinovou bezpečnost a udržitelnost.

Hlavní roli v jevu, kdy různé části orgánů rostlin rostou rozdílnou rychlostí, hraje fytohormon auxin. STARMORPH využívá interdisciplinární přístup, který kombinuje fyziologii rostlin, buněčnou biologii, genetiku, biofyziku, syntetickou biologii a bioanalytickou chemii. Čtyři vědecké týmy prozkoumají, jak změny v distribuci a koncentraci auxinu ovlivňují morfogenezi rostlin, tedy jejich tvar a růst.

„Vyvineme nové chemické a bioinženýrské metody k mapování auxinu uvnitř buněk a sledování jeho dynamiky v čase a prostoru,“ doplňuje Ondřej Novák z laboratoře růstových regulátorů – společného pracoviště Přírodovědecké fakulty UP a Ústavu experimentální botaniky AV ČR. „Výsledky by měly odhalit, jak fytohormon auxin, mechanické signály a vývojové programy společně interagují na více úrovních. Projekt zavádí koncept ‚auxinového podpisu‘, který zahrnuje dynamiku hormonu uvnitř rostlinné buňky v reakci na mechanické signály,“ dodává.


Ondřej Novák zkoumá rostlinné hormony.

Modelový huseníček
Vědci a vědkyně v STARMORPH využívají jako modelovou rostlinu huseníček rolní. Studují vývoj jejího apikálního háčku – zakřivené části stonku blízko vrcholu – pomocí které může rostlina bezpečně prorůst půdou. Hraje totiž klíčovou roli v dalším růstu a vývoji rostliny po vyklíčení ze semene. Háček se vytvoří tak, že je na vnitřní straně vznikajícího stonku potlačen růst buněk. Jakmile sazenička pronikne půdou na povrch, buňky se na vnitřní straně začnou opět prodlužovat a háček se otevře.

„Tato vlastnost činí z apikálního háčku skvělý model pro studium toho, jak může rostlina regulovat procesy potlačení nebo podpory růstu buněk. Pochopíme-li, jak regulovat růst rostlin, proces bychom mohli přeprogramovat,“ říká Ondřej Novák.

Získání ERC Synergy grantu vnímá ředitel Ústavu experimentální botaniky AV ČR Jan Martinec jako velký úspěch Ondřeje Nováka i celého pracoviště. „Potvrzuje se tím, že ve výzkumu rostlinných hormonů je náš ústav na světové špičce. Jde zároveň o příslib nových objevů, které můžou přispět k řešení globálních problémů, jež přináší změna klimatu,“ říká.

ERC Synergy granty podporují multidisciplinární projekty 2–4 vědeckých týmů. Celkový rozpočet grantové výzvy činil v roce 2024 celkem 570 milionů eur. Z 540 hodnocených projektů jich podporu získalo 56. ERC založila Evropská unie v roce 2007 jako evropskou organizaci pro financování špičkového výzkumu.

O výzkumu Ondřeje Nováka se dočtete více v časopise A / Magazín.

Více podrobností o projektu najdete v tiskové zprávě.

Text: Zuzana Dupalová, Divize vnějších vztahů SSČ AV ČR, s využitím tiskové zprávy AV ČR
Foto: Jana Plavec, Divize vnějších vztahů SSČ AV ČR

Licence Creative Commons Text a fotografie jsou uvolněny pod svobodnou licencí Creative Commons.

Přečtěte si také

Aplikovaná fyzika

Vědecká pracoviště

Základní fyzikální zákony jsou v ústavech této sekce východiskem pro výzkum nových struktur a makroskopických vlastností pevných látek, tekutin a plazmatu. Studium mikrostruktury a mikroprocesů otvírá cestu k řešení problémů „materiálových věd“, jako jsou např. vlastnosti kompozitních materiálů a konstrukcí, poruchová mechanika a dynamika nebo biomechanika. Modelování prostorově vysoce strukturovaného turbulentního proudění rozličných tekutin, výzkum dynamiky kapalin a plynů biosféry či plazmových technologií jsou často výrazně aplikačně orientované. Studium vysokoteplotního plazmatu se soustřeďuje především na pulsní výkonové systémy a problémy udržení a ohřevu plazmatu v tokamaku. Bádání v oblasti aplikované fyziky má často interdisciplinární charakter a jeho výsledky také nacházejí použití v nejrůznějších oblastech vědy a techniky. Například umělá syntéza přirozené a dobře srozumitelné české řeči je důležitým úkolem v oboru zpracování číslicových signálů. Unikátní přístroje a měřící techniky byly vyvinuty pro spektroskopii a elektronovou mikroskopii živých objektů. Sekce zahrnuje 6 ústavů s přibližně 920 zaměstnanci, z nichž je asi 580 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce