
Na entropii záleží! Výzkum českých vědců posouvá vývoj materiálů
27. 02. 2025
Vědeckému týmu z Akademie věd ČR a Masarykovy univerzity se podařil zásadní přínos do výzkumu hromadění nečistot na rozhraní mezi krystaly. Tento jev například v 60. letech minulého století způsobil sérii havárií v jaderných elektrárnách ve Velké Británii. Studie publikovaná v prestižním časopise Progress in Materials Science otevírá nové možnosti pro vývoj odolnějších slitin či nových technologických procesů jejich výroby.
Katastrofální selhání ocelových turbín v jaderných elektrárnách je jedním z příkladů, kdy selhává soudržnost materiálu. Destrukce turbín v tomto případě nebyla následkem problémů vlastního provozu jaderné elektrárny, ale příčinou bylo hromadění (segregace) fosforu na rozhraních mezi krystaly kovu, tzv. hranicích zrn.
Segregaci nečistot zkoumají vědci na celém světě po desetiletí jak experimentálně, tak teoreticky a v poslední době i pomocí umělé inteligence. Přesto se experimentální výsledky a teoretická data málokdy shodují. Čeští vědci teď odhalili podstatu tohoto záhadného rozporu. Zásadní roli totiž hraje entropie, kterou dříve vědci v teoretických výpočtech často opomíjeli.
„Článek zahajuje novou etapu ve studiu segregace nečistot na hranicích zrn v materiálech. S kolegou jsme totiž prokázali, že bez zahrnutí entropie nelze naměřeným datům dobře porozumět a že na entropii opravdu záleží. Současně se mi podařilo předpovědět nový typ segregace příměsí na hranicích zrn, který je zcela řízen entropií,“ vysvětluje Pavel Lejček z Fyzikálního ústavu AV ČR.
Komplexní znalost chování materiálů, jako jsou oceli, včetně všech typů segregace příměsí na hranicích zrn může výrazně pomoci nejen k vývoji nových materiálů odolných vůči mezikrystalové křehkosti, ale i k vysokoteplotní stabilizaci vysoce perspektivních nanokrystalických materiálů pro konstrukční účely.
„Výzkum zahajuje jeden z důležitých trendů v této oblasti, přitom stojí zcela na výsledcích české vědy,“ zdůrazňuje Mojmír Šob z Přírodovědecké fakulty Masarykovy univerzity.
Entropie je termodynamická veličina, která charakterizuje míru neuspořádanosti materiálu. Liší se proto u strukturně uspořádaného krystalu a u méně strukturně uspořádaných oblastí, jako jsou hranice zrn v materiálu. Entropie je vedle energie důležitou charakteristikou segregace příměsí na hranicích zrn. Nelze ji tedy považovat jen za „matematický artefakt“, jak se často objevuje v odborné literatuře.
Odkaz na publikaci:
Entropy: A controversy between experiment and calculations in grain boundary segregation, Pavel Lejček, Mojmír Šob, Progress in Materials Science Volume 151, May 2025, 101431
https://doi.org/10.1016/j.pmatsci.2025.101431
Více informací:
prof. Pavel Lejček, Fyzikální ústav AV ČR
+420 266 05 2167
lejcekp@fzu.cz
prof. RNDr. Mojmír Šob, DrSc., Přírodovědecká fakulta Masarykovy univerzity, Ústav chemie
+420 549 49 7450
sob@chemi.muni.cz
Přečtěte si také
- O Keltech na Českobudějovicku i tasemnici na Lipně – Akademické půlhodinky
- Střevní mikrobiom ovlivňuje náchylnost goril v zoo k onemocněním srdce
- Nový program českých vědců se zaměří na vzácná onemocnění
- Česká elektronika pro evropskou sondu k Venuši úspěšně prošla první fází vývoje
- Částečné úvazky: v Česku vzácné zboží
- Za rozvojem rezistence k inzulinu stojí i mitochondriální geny
- Společně tvoříme budoucnost: závěrečná konference GENDERACTIONplus
- Jak čolci zvládají změny prostředí? Roli hraje nejen teplota, ale i konkurence
- Týden mozku 2025: Objevte možnosti lidské mysli
- „Sluneční sonda“ Solar Orbiter míří k dalšímu klíčovému průletu kolem Venuše
Aplikovaná fyzika
Vědecká pracoviště
- Ústav fotoniky a elektroniky AV ČR
Ústav fyziky materiálů AV ČR
Ústav fyziky plazmatu AV ČR
Ústav přístrojové techniky AV ČR
Ústav teoretické a aplikované mechaniky AV ČR
Ústav termomechaniky AV ČR
Základní fyzikální zákony jsou v ústavech této sekce východiskem pro výzkum nových struktur a makroskopických vlastností pevných látek, tekutin a plazmatu. Studium mikrostruktury a mikroprocesů otvírá cestu k řešení problémů „materiálových věd“, jako jsou např. vlastnosti kompozitních materiálů a konstrukcí, poruchová mechanika a dynamika nebo biomechanika. Modelování prostorově vysoce strukturovaného turbulentního proudění rozličných tekutin, výzkum dynamiky kapalin a plynů biosféry či plazmových technologií jsou často výrazně aplikačně orientované. Studium vysokoteplotního plazmatu se soustřeďuje především na pulsní výkonové systémy a problémy udržení a ohřevu plazmatu v tokamaku. Bádání v oblasti aplikované fyziky má často interdisciplinární charakter a jeho výsledky také nacházejí použití v nejrůznějších oblastech vědy a techniky. Například umělá syntéza přirozené a dobře srozumitelné české řeči je důležitým úkolem v oboru zpracování číslicových signálů. Unikátní přístroje a měřící techniky byly vyvinuty pro spektroskopii a elektronovou mikroskopii živých objektů. Sekce zahrnuje 6 ústavů s přibližně 920 zaměstnanci, z nichž je asi 580 vědeckých pracovníků s vysokoškolským vzděláním.