Zahlavi

Nová nanočástice usnadní vývoj mRNA vakcín i léčbu genetických chorob

21. 09. 2021

Čeští vědci objevili nový typ látek schopných bezpečně dopravit do buněk nukleové kyseliny, a to od základních stavebních kamenů až po dlouhé řetězce RNA a DNA. Univerzální přepravní systém lze využít jak v léčbě genetických onemocnění, tak v mRNA vakcínách, vhodných k prevenci covidu-19. Pomyslným vozíčkem, který do buňky nukleové kyseliny doručí, je nanočástice XMAN. Při jejím pojmenování se vědci inspirovali komiksovým světem.

Nová nanočástice není pro tělo toxická a je schopna snadno proniknout do buňky a uvolnit svůj náklad. Název XMAN vznikl na základě slovní hříčky, která pracuje s podobností slov adamantan (látka využívaná k syntéze sloučenin) a adamantium (fiktivní kov ze série X-Men).

„Adamantan tvoří jádro ionizovatelného lipidoidu v našich lipidických nanočásticích. Komiksové adamantium zase umožňuje z normálního člověka vytvořit X-Mena, který stojí na straně dobra a pomáhá lidstvu přežít. Náš adamantan hraje podobně důležitou roli,“ osvětluje název objevené nanočástice Petr Cígler, vedoucí skupiny syntetické nanochemie v Ústavu organické chemie a biochemie AV ČR.

Dr. Petr Cígler
Vedoucí skupiny syntetické nanochemie Ústavu organické chemie a biochemie AV ČR Petr Cígler

Nanočástice XMAN je unikátní například v univerzálnosti použití (pro většinu nukleových kyselin) a ve stabilitě. „Naši XMANi jsou stabilní i při čtyřech stupních Celsia a univerzálně zabalí a ochrání jakoukoli nukleovou kyselinu bez dlouhého optimalizování,“ dodává Petr Cígler.

Balíček přímo do buňky

Nukleové kyseliny DNA a RNA známe především jako nositelky genetické informace. Lze je využít ale i k léčebným účelům. V poslední době se v souvislosti s pandemií covidu-19 hodně zmiňovala molekula mRNA, která je základem vakcíny proti této nemoci. Molekula mRNA plní funkci jakéhosi receptu nebo návodu k syntéze proteinu – v tomto případě spike proteinu koronaviru – proti němuž si organismus sám vytvoří protilátky. K syntéze dochází uvnitř buňky. Jenže jak do ní molekulu dostat?

„RNA je velmi nestabilní látka a podléhá rychlému rozpadu. Aby se vůbec mohla dostat do buňky, je třeba ji zabalit do transportního obalu, který ji ochrání před okolním prostředím a současně zajistí bezpečnou přepravu tělem do buňky. To ale vůbec není triviální problém,“ říká Klára Grantz Šašková ze skupiny proteázy lidských patogenů Ústavu organické chemie a biochemie AV ČR.

Dr. Klára Grantz Šašková
Klára Grantz Šašková ze skupiny proteázy lidských patogenů Ústavu organické chemie a biochemie AV ČR a vedoucí skupiny při BIOCEV

Jelikož se pro každou cílenou terapii používají jiné molekuly RNA o různé velikosti, bylo až dosud nutné najít vždy pro každý konkrétní typ RNA unikátní směs lipidů schopnou molekulu zabalit, dopravit a uvolnit do buňky. Obal navíc nesmí být toxický, což výrazně prodlužuje vývoj.

Stabilní a bezpečný dopravce

Nová nanočástice by mohla celý proces dopravy nukleových kyselin do buněk zjednodušit právě díky své stabilitě a bezpečnosti. Objev se podařil týmu vědců z Ústavu organické chemie a biochemie AV ČR pod vedením Petra Cíglera a Kláry Grantz Šaškové ve spolupráci s kolegy z Ústavu molekulární genetiky AV ČR a vědeckého centra BIOCEV.

Nové dopravní nanočástice by mohly pomoci v nejrůznějších terapiích, například v léčbě nemocí typu hemofilie A nebo cystické fibrózy způsobené nedostatečnou tvorbou určitého proteinu. Dopravená molekula mRNA v takovém případě buňce umožňuje chybějící protein vyrobit.

Nanočástice XMAN jako obal
Univerzálnost částic spočívá v tom, že jeden obal funguje stejně pro různé nukleové kyseliny.

„Naše látky jsou schopny se bezpečně dostat i do tak obtížně proniknutelných buněk, jako jsou lidské primární jaterní buňky nebo buněčné linie z různých hematologických nádorů, které v současnosti představují obtížný cíl pro léčbu,“ dodává Klára Grantz Šašková.  

Látky by mohly pomoci i při léčbě nemocí způsobených tvorbou patologických proteinů, například u některých forem život ohrožující amyloidózy (při níž problémy způsobuje protein transthyretin). V takovém případě je možné do buňky doručit krátký úsek RNA označovaný siRNA (malá interferující RNA), který po vstupu dovnitř dokáže tvorbu škodlivého či nesprávně fungujícího proteinu vypnout.

Nanočástice XMAN
XMAN je velký přibližně jako virus, kolem sta nanometrů, čili stokrát menší než buňka, do které umí proniknout.

A kdy se hrdinní XMANi dostanou ke slovu? Výsledky výzkumu otiskl prestižní časopis Advanced Functional Materials a látky byly patentovány. Nyní se vyjednávají podmínky případné licenční smlouvy. Kancelář IOCB TECH, dceřiná společnost Ústavu organické chemie a biochemie AV ČR, na tom nyní intenzivně pracuje a jedná s potenciálními zájemci z farmaceutického průmyslu. 

Text: Leona Matušková, Divize vnějších vztahů SSČ AV ČR, ve spolupráci s Dušanem Brinzanikem z Ústavu organické chemie a biochemie AV ČR 
Foto a vizualizace: Tomáš Belloň, Ústav organické chemie a biochemie AV ČR
 

Přečtěte si také

Aplikovaná fyzika

Vědecká pracoviště

Základní fyzikální zákony jsou v ústavech této sekce východiskem pro výzkum nových struktur a makroskopických vlastností pevných látek, tekutin a plazmatu. Studium mikrostruktury a mikroprocesů otvírá cestu k řešení problémů „materiálových věd“, jako jsou např. vlastnosti kompozitních materiálů a konstrukcí, poruchová mechanika a dynamika nebo biomechanika. Modelování prostorově vysoce strukturovaného turbulentního proudění rozličných tekutin, výzkum dynamiky kapalin a plynů biosféry či plazmových technologií jsou často výrazně aplikačně orientované. Studium vysokoteplotního plazmatu se soustřeďuje především na pulsní výkonové systémy a problémy udržení a ohřevu plazmatu v tokamaku. Bádání v oblasti aplikované fyziky má často interdisciplinární charakter a jeho výsledky také nacházejí použití v nejrůznějších oblastech vědy a techniky. Například umělá syntéza přirozené a dobře srozumitelné české řeči je důležitým úkolem v oboru zpracování číslicových signálů. Unikátní přístroje a měřící techniky byly vyvinuty pro spektroskopii a elektronovou mikroskopii živých objektů. Sekce zahrnuje 6 ústavů s přibližně 920 zaměstnanci, z nichž je asi 580 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce