Počítačový model ucha může pomoci vylepšit kochleární implantáty
22. 11. 2023
Pavel Jungwirth se svými kolegy z ÚOCHB AV ČR a z rakouské firmy na kochleární implantáty MED-EL představili kompletní počítačový model ucha. Pomocí něho lze modelovat sluch savců, včetně člověka, a to od vnějšího ucha až po sluchový nerv. Výsledky jejich výzkumu zveřejnil vědecký časopis Hearing Research. Díky tomu bude možné nejen lépe prozkoumat lidské ucho, ale v budoucnu také zdokonalovat a lépe nastavovat sluchové pomůcky, včetně kochleárních implantátů.
Podrobná konstrukce modelu ucha založená na nejnovějších znalostech fyziologie a molekulárních principů slyšení umožňuje také zkoumat poruchy sluchu, ať už jsou způsobené genetickými nebo vnějšími faktory. Odborníci se díky tomu můžou dozvědět víc o detailních mechanismech různých forem sluchového postižení a otevírá se i cesta k vylepšení sluchadel a kochleárních implantátů. Počítačový model ucha totiž umožňuje získat údaje, které jsou experimentálně jen těžko dostupné. Fyzické měření na lidském uchu by bylo příliš invazivní a jediné a co se proto dosud nabízelo, bylo využití zvířecích modelů. Znovu se ukazuje, že počítačové modelování poskytuje vhled do konkrétních problémů tam, kde nelze provést experiment a umožňuje porozumět systému jako celku.
Počítačový model periferního sluchového systému podrobně mapuje, jak se přicházející zvuk převádí na mechanické vibrace ve středním a vnitřním uchu, následně na elektrické vzruchy vnějších a vnitřních vláskových buněk, aby se nakonec proměnil prostřednictvím působení neurotransmiterů na sérii elektrických impulzů ve sluchovém nervu. Ty se pak převádějí do centrální nervové soustavy.
Proč se Pavel Jungwirth pustil do výzkumu, který na první pohled tematicky nezapadá do práce jeho vědecké skupiny? „Směs bláznovství a osobních důvodů,“ vysvětluje: „Můj mladší syn Matěj má závažné sluchové postižení a já jsem chtěl té problematice lépe porozumět. Kromě toho jsem si uvědomil, že v lidském uchu je přenos informace zprostředkován iontovými proudy vápníku a draslíku, což je přesně naše výzkumná parketa.“
Prof. Jungwirth přiznává, že v roce 2011, kdyhttps://www.sciencedirect.com/science/article/pii/S0378595523002125 se do projektu pouštěl, naivně věřil, že je to práce maximálně na tři, čtyři roky. Vše začalo spoluprací s Pavlem Mistríkem z firmy MED-EL, která využívá počítačové modely k vývoji kochleárních implantátů. Výzkum pomohl dotáhnout do zdárného konce až po celých dvanácti letech neobyčejně nadaný a pracovitý student Ondřej Ticháček.
Počítačový model ucha založený na programovacím jazyku a numerickém výpočetním prostředí MATLAB je teď k dispozici široké vědecké komunitě. Může jej také použít každý, kdo má zájem modelovat různé typy sluchových poruch nebo se soustředí na otázku, jak tyto vady kompenzovat sluchadly nebo kochleárními implantáty.
Článek: https://www.sciencedirect.com/science/article/pii/S0378595523002125
Kontakt:
Veronika Sedláčková
PR ÚOCHB AV ČR
veronika.sedlackova@uochb.cas.cz
Přečtěte si také
- PRAK urychluje přenos vědy do praxe už třetím rokem, připravil Inovační fórum
- AV ČR ocenila výzkumy, které přispívající k prestiži české vědy ve světě
- Invazní ekologové BÚ AV ČR opět na seznamu nejcitovanějších vědců
- Memorandum: UK, AV ČR a UPOL posílí svou institucionální odolnost
- Proba-3 – pravidelné zatmění Slunce díky přesnému letu ve formaci
- Monografie rozkrývá vztahy mezi uměním a politikou v meziválečném Československu
- Akademie věd předá šest medailí, dvě zahraničním expertům
- Objev mini-neptunu a tajemství ztraceného horkého jupitera v systému TOI-2458
- Vědci objevili nový obří virus v římovské nádrži. Dostal jméno Budvirus
- Vědci odhalili klíčový protein pro vývoj nové generace antibiotik
Aplikovaná fyzika
Vědecká pracoviště
- Ústav fotoniky a elektroniky AV ČR
Ústav fyziky materiálů AV ČR
Ústav fyziky plazmatu AV ČR
Ústav přístrojové techniky AV ČR
Ústav teoretické a aplikované mechaniky AV ČR
Ústav termomechaniky AV ČR
Základní fyzikální zákony jsou v ústavech této sekce východiskem pro výzkum nových struktur a makroskopických vlastností pevných látek, tekutin a plazmatu. Studium mikrostruktury a mikroprocesů otvírá cestu k řešení problémů „materiálových věd“, jako jsou např. vlastnosti kompozitních materiálů a konstrukcí, poruchová mechanika a dynamika nebo biomechanika. Modelování prostorově vysoce strukturovaného turbulentního proudění rozličných tekutin, výzkum dynamiky kapalin a plynů biosféry či plazmových technologií jsou často výrazně aplikačně orientované. Studium vysokoteplotního plazmatu se soustřeďuje především na pulsní výkonové systémy a problémy udržení a ohřevu plazmatu v tokamaku. Bádání v oblasti aplikované fyziky má často interdisciplinární charakter a jeho výsledky také nacházejí použití v nejrůznějších oblastech vědy a techniky. Například umělá syntéza přirozené a dobře srozumitelné české řeči je důležitým úkolem v oboru zpracování číslicových signálů. Unikátní přístroje a měřící techniky byly vyvinuty pro spektroskopii a elektronovou mikroskopii živých objektů. Sekce zahrnuje 6 ústavů s přibližně 920 zaměstnanci, z nichž je asi 580 vědeckých pracovníků s vysokoškolským vzděláním.