Skrytý poklad v Galaxii
24. 06. 2024
Pokud jde o nejenergetičtější úkazy ve vesmíru, uvolňování gravitační energie v rentgenových binárních systémech vyniká jako vysoce účinný proces. Rentgenové dvojhvězdy jsou zajímavé systémy složené ze dvou nebeských těles: normální hvězdy a kompaktního mrtvého objektu, tedy černé díry nebo neutronové hvězdy, která nasává materiál ze svého hvězdného společníka. V naší Galaxii bylo dosud identifikováno několik stovek takových zdrojů.
Mezi první rentgenové dvojhvězdy objevené ve vesmíru patří systém Cygnus X-3, nalezený v souhvězdí Labutě. Od počátku 70. let 20. století byl tento binární systém známý svou schopností krátkodobě zjasnit jako jeden z nejintenzivnějších rádiových zdrojů na obloze, avšak za několik dní pohasnout nebo zcela zmizet. Toto zvláštní chování podnítilo první snahy o sjednocení dostupných astronomických pozorování po celém světě. Jedinečné chování systému během těchto krátkodobých, vysoce energetických událostí, kontrastující s jeho jinak „normální“ povahou, vedlo k tomu, že jej R. M. Hjellming v roce 1973 nazval „astronomickou hádankou Cygnus X-3“. Od té doby se o pochopení její povahy snaží mnoho vědců.
Průlom v rozluštění této záhady přineslo studium tohoto systému pomocí družice Imaging X-ray Polarimetry Explorer (IXPE), která je pilotním projektem kosmických agentur americké NASA a italské ASI. Podle Alexandry Veledinové, vědecké pracovnice na Univerzitě v Turku a hlavní autorky studie, umožnilo měření rentgenové polarizace s IXPE nahlédnout do konfigurace hmoty tvořící nejbližší okolí černé díry. Veledinová vysvětluje: „Zjistili jsme, že kompaktní objekt je obklopen obálkou z husté neprůhledné hmoty. Světlo, které pozorujeme, je odrazem od vnitřních stěn trychtýře tvořeného okolním plynem, který připomíná zmrzlinový pohár se zrcadlovým vnitřkem.“
Tento objev vedl k identifikaci Cygnus X-3 jako člena třídy tzv. ultra-jasných rentgenových zdrojů, které spotřebovávají hmotu tak obrovským tempem, že černá díra nestíhá pohltit všechen materiál padající do ní ze sousední hvězdy, a tak se jeho část vyvrhuje směrem ven. „Ultra-jasné rentgenové zdroje jsou obvykle pozorovány jako zářivé skvrny na snímcích vzdálených galaxií, přičemž jejich emise jsou zesíleny fokusačním efektem okolního trychtýře kompaktního objektu, který působí podobně jako megafon,“ upřesňuje Juri Poutanen, profesor na Univerzitě v Turku a spoluautor výzkumu. „Vzhledem k obrovským vzdálenostem k těmto zdrojům, které tisíckrát přesahují rozpětí naší Galaxie, se však rentgenovým dalekohledům jeví jako relativně slabé. Náš objev nyní odhalil jasný protějšek těchto vzdálených objektů sídlící přímo v naší Galaxii,“ dodává Poutanen.
Do roku 2021 bylo možné zkoumat rentgenové světlo z vesmíru prakticky jen pomocí spektrální analýzy. IXPE je však prvním detektorem rentgenové polarizace svého druhu a otevírá tak astronomům zcela nový pohled do vysoko-energetických objektů. „Naše studie dokládá, jak moc je nezbytné kombinovat informace z různých metod pozorování pro pochopení těch nejdéle trvajících záhad vesmíru,“ uzavírá Jakub Podgorný z Astronomického ústavu AV ČR, který se na výzkumu podílel mezi vedoucími autory v rámci svého absolvovaného doktorského studia ve Štrasburku a v Praze. Jeho úlohou bylo simulovat rozdílné scénáře v blízkém okolí centrální černé díry pro správnou interpretaci dat. Významnou českou stopu na objevu také přinesli Michal Dovčiak, Jiří Svoboda a profesor Vladimír Karas (všichni z Astronomického ústavu AV ČR) v oblasti datové analýzy, modelování a vývoje mise IXPE.
Právě vydávaná vědecká publikace tak začíná novou kapitolu ve výzkumu tohoto mimořádného kosmického zdroje záření a nabízí příležitosti k detailnímu výzkumu extrémního pohlcování hmoty. Další podrobnosti naleznete v článku Veledina et al. 2024 v časopise Nature Astronomy (https://www.nature.com/articles/s41550-024-02294-9).
Kontakt pro média:
RNDr. Jakub Podgorný, Ph.D.
jakub.podgorny@asu.cas.cz, +420 731 919 688
Pavel Suchan
tiskový tajemník Astronomického ústavu AV ČR
suchan@astro.cz,+420 737 322 815
Přečtěte si také
- PRAK urychluje přenos vědy do praxe už třetím rokem, připravil Inovační fórum
- AV ČR ocenila výzkumy, které přispívající k prestiži české vědy ve světě
- Invazní ekologové BÚ AV ČR opět na seznamu nejcitovanějších vědců
- Memorandum: UK, AV ČR a UPOL posílí svou institucionální odolnost
- Proba-3 – pravidelné zatmění Slunce díky přesnému letu ve formaci
- Monografie rozkrývá vztahy mezi uměním a politikou v meziválečném Československu
- Akademie věd předá šest medailí, dvě zahraničním expertům
- Objev mini-neptunu a tajemství ztraceného horkého jupitera v systému TOI-2458
- Vědci objevili nový obří virus v římovské nádrži. Dostal jméno Budvirus
- Vědci odhalili klíčový protein pro vývoj nové generace antibiotik
Aplikovaná fyzika
Vědecká pracoviště
- Ústav fotoniky a elektroniky AV ČR
Ústav fyziky materiálů AV ČR
Ústav fyziky plazmatu AV ČR
Ústav přístrojové techniky AV ČR
Ústav teoretické a aplikované mechaniky AV ČR
Ústav termomechaniky AV ČR
Základní fyzikální zákony jsou v ústavech této sekce východiskem pro výzkum nových struktur a makroskopických vlastností pevných látek, tekutin a plazmatu. Studium mikrostruktury a mikroprocesů otvírá cestu k řešení problémů „materiálových věd“, jako jsou např. vlastnosti kompozitních materiálů a konstrukcí, poruchová mechanika a dynamika nebo biomechanika. Modelování prostorově vysoce strukturovaného turbulentního proudění rozličných tekutin, výzkum dynamiky kapalin a plynů biosféry či plazmových technologií jsou často výrazně aplikačně orientované. Studium vysokoteplotního plazmatu se soustřeďuje především na pulsní výkonové systémy a problémy udržení a ohřevu plazmatu v tokamaku. Bádání v oblasti aplikované fyziky má často interdisciplinární charakter a jeho výsledky také nacházejí použití v nejrůznějších oblastech vědy a techniky. Například umělá syntéza přirozené a dobře srozumitelné české řeči je důležitým úkolem v oboru zpracování číslicových signálů. Unikátní přístroje a měřící techniky byly vyvinuty pro spektroskopii a elektronovou mikroskopii živých objektů. Sekce zahrnuje 6 ústavů s přibližně 920 zaměstnanci, z nichž je asi 580 vědeckých pracovníků s vysokoškolským vzděláním.