Nová metoda mapování elektrostatického pole molekul se submolekulárním rozlišením
18. 05. 2016
Vědci z Fyzikálního ústavu Akademie věd ČR ve spolupráci s kolegy z Utrechtské univerzity vyvinuli novou metodu, pomocí níž lze zobrazit elektrostatické pole molekul na atomární úrovni. Práce, která byla publikována v prestižním časopise Nature Communications, posouvá současné možnosti zobrazení jednotlivých molekul na povrchu pevné látky pomocí mikroskopie atomárních sil (AFM) a skenovací tunelovací mikroskopie (STM).
Nová metoda dokáže určit elektrostatické pole z deformací obrázků molekul změřených hrotem, jehož koncový atom se vychyluje působením elektrostatického náboje zkoumané molekuly, podobně jako raménko klasického elektroskopu. Pohybem tohoto koncového atomu hrotu dochází ke zkreslení poloh atomů a vazeb zkoumaných molekul v obrázcích pořízených AFM, podobně jako dochází k deformaci obrazů hvězd a galaxií v astronomických fotografiích vlivem silného gravitačního pole (tzv. Einsteinovy gravitační čočky). Ing. Pavel Jelínek, Ph.D., Ing. Prokop Hapala a další autoři této práce vyvinuli metodu, která podle míry zkreslení obrázků rekonstruuje elektrostatické pole v blízkosti zkoumaných molekul a umožňuje tak mnohem lépe charakterizovat jejich elementární vlastnosti.
Metoda přináší výrazné výhody oproti starší technice tzv. Kelvinovy sondy především tím, že umožňuje dosáhnout výrazně lepšího prostorového rozlišení elektrostatického pole. Navíc lze informace o elektrostatickém poli získat zároveň s informací o chemické struktuře studované molekuly, a to provedením pouze jednoho AFM či STM měření. Princip metody může být v budoucnu využit i pro mapování jiných silových polí okolo molekul, například magnetických polí.
Využití hrotů s vychylujícím se koncovým atomem je známo již delší dobu. Touto metodou bylo poprvé možné přímo pozorovat chemickou strukturu jednotlivých molekul. Tým českých vědců již dříve poukázal na klíčovou roli vychylování hrotu a jeho souvislost s elektrostatickou interakcí pro pochopení AFM/STM obrázků. Právě nová práce ukazuje, jak lze rozložení elektrostatického pole získat z obrazů poměrně jednoduchým způsobem.
Elektrostatické pole kolem molekuly z velké části určuje její chování, např. ovlivňuje preferovaná místa v molekule, kde dochází k chemickým reakcím s jinými sloučeninami. Toto pole má také zásadní význam při samoorganizačních procesech jednotlivých molekul vytvářejících tzv. supramolekuly (např. DNA), které mají velký význam v biologii a organické chemii. Možnost přímého měření elektrostatického pole proto otevírá nové možnosti v oblasti materiálového výzkumu, fyziky, chemie a nanotechnologie.
Obr. a) Atomární struktura uhlovodíkové molekuly, nazývané TOAT (1,5,9-trioxo-13-azatriangulene). Centrální dusík a periferní kyslíky vytváří silné elektrické pole v molekule. b) Elektrostatické pole molekuly TOAT vychyluje pružně ukotvenou částici na konci hrotu (atom xenonu – Xe nebo molekulu oxidu uhelnatého – CO), díky čemuž jsou různé části molekuly zdánlivě zvětšené, zmenšené či posunuté. c) Obraz molekuly TOAT pořízený mikroskopem atomárních sil s hrotem, který má na svém konci jednu CO molekulu. Obraz je téměř nezkreslený díky malému elektrostatickému náboji CO molekuly na hrotu. d) Stejná molekula zobrazená hrotem zakončeným právě jedním atomem Xe. Střed molekuly TOAT je výrazně zmenšený kvůli odchylování kladně nabitého atomu Xe od atomu dusíku ve středu molekuly.
Přečtěte si také
- Nanodiamanty pomáhají rozkládat nervově paralytické látky
- Na ELI Beamlines se s projekty hlásí první externí uživatelé
- Čeští vědci pomohli rozluštit dědičnou informaci hrachu
- IDEA CERGE-EI zve na přednášku o odborném vzdělávání
- Renomovaný chemik Hiroshi Nakatsuji získal čestnou medaili Akademie věd ČR
- Klíčový objev pro pochopení mechanismu Alzheimerovy choroby
- Český Siemens ocenil mladé vědce, studenty a pedagogy
- Odkud a kam putují nepůvodní rostliny
- Americký astronaut bude přednášet v Praze
- Vědci z AV ČR budou zkoumat lesy na šesti kontinentech
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.