Převratný patent českých vědců: levná a bezpečná baterie s vysokou kapacitou
21. 01. 2022
Nehoří a nevybuchuje, vydrží pět set cyklů vybití a opětovného nabití a její kapacita je srovnatelná s komerčními nikl-metal hydridovými bateriemi. Je vyrobena z extrémně levných a recyklovatelných materiálů – vědci z Fyzikálního ústavu AV ČR a Ústavu fyzikální chemie J. Heyrovského AV ČR představují nový typ nabíjecí baterie, která přináší převrat v technologiích. Využití může najít například v oblasti solární energetiky.
Ukládání elektřiny vyrobené v solárních nebo větrných elektrárnách je velkou výzvou. I když na trhu existuje celá řada inovativních typů baterií, většina z nich se nehodí pro vysokokapacitní ukládání elektřiny, a to zejména z důvodu vysoké ceny. Devizou nového typu baterie jsou použité materiály, které jsou levné a běžně dostupné.
Experimentální vysokonapěťová baterie funguje na principu elektrochemické reakce, jde o vodnou baterii, která využívá slanou vodu, zinek a grafit. Vysoké napětí baterii dodává speciální chaotropní sůl, jejíž vliv na vlastnosti vodných roztoků studoval před více než 130 lety pražský německý chemik Franz Hofmeister.
Tým vědců vedený Jiřím Červenkou z Fyzikálního ústavu AV ČR se jeho poznatky inspiroval a vyvinul baterii, která se může uplatnit například ve stacionárních bateriových systémech. Využití baterie spatřují výzkumníci tam, kde je trvale umístitelná – například u solárních panelů. Výhodou je, že dokáže energii uložit i pro případ, kdy slunce nesvítí.
„Vodné baterie byly představeny již dříve, ale jejich rozmachu bránila relativně nízká kapacita a napětí. Našemu týmu se podařilo tento problém vyřešit tím, že jsme do roztoku vody přidali velké množství chaotropní soli chloristanu zinečnatého,“ vysvětluje Jiří Červenka.
Dosažené napětí je srovnatelné s napětím, kterého dosahují organické elektrolyty v komerčních lithiových bateriích. Nespornou výhodou našeho elektrolytu je vysoká vodivost, která na rozdíl od organických elektrolytů významně neklesá ani za nízkých teplot.
Výbuch i vznícení mimo hru
Baterie nehoří a nemůže vybuchnout, protože má nehořlavý elektrolyt. V tom je zásadní rozdíl oproti Li-ion bateriím, které jsou nyní nejpoužívanější na trhu. „Li-ion baterie mají velmi hořlavé organické elektrolyty, a navíc obsahují lithium, které se může na vzduchu samovznítit. To u naší baterie nehrozí,“ zdůrazňuje Jiří Červenka.
Jiří Červenka věří, že jeho tým našel díky nové baterii průlomové řešení v oblasti ukládání elektřiny.
Inovativní řešení si vědci patentovali v rámci lucemburského a evropského patentu. Výsledky svých výzkumů také publikovali v prestižních vědeckých časopisech, naposledy v tomto týdnu v Journal of Materials Chemistry A. V současné době hledají průmyslové partnery se zájmem o další vývoj produktu.
„Tento systém je nesmírně zajímavý nejen pro budoucí aplikace, ale i z hlediska základního výzkumu. Jak jsme ukázali, velmi důležitou roli zde hraje například vnitřní struktura materiálu elektrod, kde přílišná dokonalost nevede k nejlepším vlastnostem v některých ohledech, což i může být další výhodou pro aplikace,“ říká o vynálezu další člen týmu, Otakar Frank z Ústavu fyzikální chemie J. Heyrovského AV ČR.
Nový typ levné, recyklovatelné, nehořlavé baterie
Princip baterie je založen na transportu dvou rozdílných iontů, dvojmocném zinku a jednomocném chloristanu. Dvojmocný zinek má v porovnání s jednomocným lithiem výhodu, že může při nabíjecím a vybíjecím procesu přenášet dva elektrony na atom, a díky tomu může mít teoreticky větší kapacitu než lithium při stejném objemu.
Kapacitu lze ještě navýšit
Dosavadní testy prokázaly, že experimentální vodná baterie dosahuje kapacity okolo
45 mAh/g a výstupní napětí 2 V a vydrží 500 cyklů vybití a opětovného nabití, aniž by její výkonnost citelně klesla. Výsledná kapacita experimentální baterie je tedy srovnatelná s komerčními nikl-metal hydridovými bateriemi.
„Domnívám se, že po důkladné optimalizaci této baterie je ještě možné významně navýšit její kapacitu,“ podtrhuje Jiří Červenka. Jeho tým se nyní zaměří na vysokokapacitní baterie s ionty, které mohou mít v principu vyšší kapacitu než lithiové baterie. Velmi slibně se jeví rovněž hliníková vodná baterie, kterou výzkumníci na podobném principu sestavili v nedávné době.
Text: Markéta Wernerová, s využitím podkladů Markéty Růžičkové, Divize vnějších vztahů SSČ AV ČR
Foto: René Volfík, Fyzikální ústav AV ČR
Text je uvolněn pod svobodnou licencí Creative Commons.
Přečtěte si také
- V Praze odstartovala největší mezinárodní konference o materiálovém modelování
- Z čeho se skládá kosmické záření? Napoví přelomová metoda českého fyzika
- Tuk je možné vydolovat i z tisíce let staré keramiky, říká Veronika Brychová
- Svérázná říše umělé inteligence. Máme se jako lidstvo bát, nebo být nadšení?
- Přelomové datování. První lidé přišli do Evropy už před 1,4 milionu let
- Přitažlivá nepřitažlivost. Vědci experimentálně potvrdili novou formu magnetismu
- Krása neviditelného krystalu. Jak se zkoumá skrytý svět atomů a molekul
- Planetky neboli asteroidy: jak pomáhají vědcům při dobývání a výzkumu vesmíru
- Nová krystalografická metoda pomůže ve vývoji léků i rychlejších počítačů
- Dva bratři Jungwirthové, dva prestižní evropské granty ve výši 120 milionů korun
Biologie a lékařské vědy
Vědecká pracoviště
- Biofyzikální ústav AV ČR
Biotechnologický ústav AV ČR
Fyziologický ústav AV ČR
Mikrobiologický ústav AV ČR
Ústav experimentální botaniky AV ČR
Ústav experimentální medicíny AV ČR
Ústav molekulární genetiky AV ČR
Ústav živočišné fyziologie a genetiky AV ČR
Cílem výzkumu je poznávání procesů v živých organismech, a to na úrovni molekul, buněk i organismů. Biofyzikální výzkum se zabývá studiem vztahu DNA – protein a vlivu faktorů životního prostředí na organismy. V oblasti molekulární genetiky a buněčné biologie jsou studovány zejména signální cesty pro spouštění reakcí a odezvy cílových genů na tyto signály; zvláštní pozornost je věnována studiu buněčných mechanismů imunitních odpovědí. Sledovány jsou rovněž genomy mikroorganismů a procesy směřující k moderním technologiím přípravy látek s definovanými biologickými účinky. V oblasti fyziologie a patofyziologie savců a člověka je výzkum zaměřen na kardiovaskulární fyziologii, neurovědy, fyziologii reprodukce a embryologii s cílem vytvořit teoretické základy preventivní medicíny. V oblasti experimentální botaniky se výzkum věnuje genetice, fyziologii a patofyziologii rostlin a moderní rostlinné biotechnologii. Sekce zahrnuje 8 vědeckých ústavů s přibližně 1930 zaměstnanci, z nichž je asi 690 vědeckých pracovníků s vysokoškolským vzděláním.