Grafen a polyanilin ve 2D jako cesta k superkondenzátorům pro elektromobilitu
21. 07. 2021
Elektromobilita by mohla dostat nové rozměry. A to doslova. Vědci z Ústavu fyzikální chemie J. Heyrovského AV ČR vyvinuli z grafenu a vodivého polymeru nové dvojrozměrné (2D) materiály a prokázali, že jsou prakticky použitelné jako superkondenzátory.
Superkondenzárory jsou alternativou rozličných lithiových baterií. Využívají se v případech, které vyžadují opakované ukládání a odběr elektrické energie v menším množství na jednotku hmotnosti než u lithiových baterií, ale je požadováno krátké a velmi intenzivní zatížení. Jako konkrétní příklad lze uvést hybridní autobusy, jejichž dieselový motor skrze generátor pohání elektromotory, které při elektrodynamickém brzdění ukládají energii do superkondenzátorů umístěných na střeše vozidla. Takové autobusy byly v minulosti testovány i v pražské městské dopravě.
Synergie kombinace uhlíkatých materiálů a vodivého polymeru, polyanilinu, byla prvně popsána před více než 10 lety. Ale až týmu pod vedením Martina Kalbáče se povedlo připravit takovéto materiály v 2D podobě, tedy definovaně a s tloušťkou odpovídající součtu rozměrů jednoho uhlíku tloušťky grafenu (syntetickému anologu tuhy) a jen o málo tlustší vrstvy polyanilinu.
Úkolem vodivého polymeru není vést elektřinu
Ačkoli polyanilin na rozdíl od naprosté většiny plastů vykazuje elektrickou vodivost srovnatelnou s hůře vodivými kovy, jeho úkolem v superkondenzátorech není vést elektřinu. V této aplikaci se využívá jeho schopnost opakovaně se oxidovat a redukovat, tj. měnit počet elektronů, které se nacházejí v řetězci polymeru. Grafen v popsaném systému funguje jako kondenzátor. Do polyanilinu se ukládá o řád více energie než do grafenové vrstvy: samotný grafen vykázal specifickou plošnou kapacitu 2,1 µF cm−2, 2D materiál sestávající z grafenu a polyanilinu pak 21,2 µF cm−2. Studie byla zveřejněna v ACS Applied Materials
& Interfaces.
Novost celého přístupu spočívá v kombinaci dvou jednoduchých syntetických kroků vedoucích k dobře definovanému materiálu. Funkcionalizace grafenu sulfonovými skupinami i příprava polyanilinové monovrstvy na površích funkcionalizovaných sulfonovými skupinami jsou postupy známé delší dobu z literatury, jen je dosud nikoho nenapadlo spojit dohromady. Ani jeden z procesů neprobíhá dokonale a jejich řiditelnost je značně omezená, ale jako dva následné kroky poskytují tenký a homogenní materiál.
„Naším cílem nebylo vzít dva materiály, nějak je smísit a dostat obtížně studovatelnou a nesnadno popsatelnou směs, na které si budeme dokazovat, že je v našich silách rozumně a dobře popsat velmi komplikovaný systém. Bylo tomu přesně naopak. Na základě hlubokých znalostí chemie a fyziky obou typů látek jsme navrhovali co nejjednodušší postup vedoucí k cíli tak, abychom se následně potýkali s překážkami plynoucími z nanorozměrů vzorků, ale ne s těmi plynoucími z nepříliš dobře definovaného složení,“ popisuje výzkum první autor studie chemik Michal Bláha.
„Námi připravené 2D struktury složené z grafenu a polyanilinu mají aplikační potenciál i v elektrokatalýze, jako fotodektory nebo jako senzory plynů,“ uzavírá Martin Kalbáč z Ústavu fyzikální chemie J. Heyrovského AV ČR.
Kontakt:
doc. RNDr. Ing. Martin Kalbáč, Ph.D.
Ústav fyzikální chemie J. Heyrovského AV ČR
martin.kalbac@jh-inst.cas.cz
+420 266 05 3804
Daniel Jakeš
Ústav fyzikální chemie J. Heyrovského AV ČR
daniel.jakes@jh-inst.cas.cz
+420 721 648 855
Přečtěte si také
- Vyšly první společné dějiny česky a německy psané literatury českých zemí
- Zdravé a dostupné potraviny, které nezničí krajinu. Nový program SAV21
- Prémie Jana Friče za rok 2024 udělena Václavu Pavlíkovi
- Srdečním buňkám někdy méně kyslíku svědčí. Umí si pak lépe poradit s infarktem
- Od nutnosti k nové realitě: práce z domova po pandemii covid-191
- Novinky z výzkumu černých děr na tiskové konferenci NASA s českou účastí
- Vědci popsali proces přinášející naději pro léčbu genetických onemocnění
- Řasa roku 2025: nově objevená Draparnaldia erecta pomůže objasnit evoluci
- Zběsilý tanec obřích exoplanet
- Nové poznatky důležité pro zdraví buněk produkujících inzulin ve slinivce
Chemické vědy
Vědecká pracoviště
- Ústav analytické chemie AV ČR
Ústav anorganické chemie AV ČR
Ústav chemických procesů AV ČR
Ústav fyzikální chemie J. Heyrovského AV ČR
Ústav makromolekulární chemie AV ČR
Ústav organické chemie a biochemie AV ČR
Chemický výzkum navazuje na tradici vytvořenou významnými českými chemiky jako Rudolfem Brdičkou, Jaroslavem Heyrovským, Františkem Šormem či Ottou Wichterlem. V teoretické i experimentální fyzikální chemii je výzkum orientován na vybrané úseky chemické fyziky, elektrochemie a katalýzy. Anorganický výzkum je zaměřen na přípravu a charakterizaci nových sloučenin a materiálů. Výzkum v oblasti organické chemie a biochemie se soustřeďuje zejména na medicínu a biologii s cílem vytvořit nová potenciální léčiva a dále do ekologie. V oblasti makromolekulární chemie jde o přípravu a charakterizaci nových polymerů a polymerních materiálů, které lze využít v technice, v biomedicíně a ve výrobních, zejména separačních, technologiích. Analytická chemie rozvíjí separační analytické techniky, zejména kapilární mikrometod, a dále se zaměřuje na metody spektrální. Chemicko-inženýrský výzkum je orientován na vícefázové systémy, homo- a heterogenní katalýzu, termodynamiku a moderní separační metody. Sekce zahrnuje 6 ústavů s přibližně 1270 zaměstnanci, z nichž je asi 540 vědeckých pracovníků s vysokoškolským vzděláním.