Oceněný mikrobiolog zkoumá, jak fungují buněčné procesy
24. 02. 2021
Syntéza proteinů vdechuje našemu tělu život. Když se jejich „pásová výroba“ zvrtne, mohou naopak přispět k rakovinnému bujení a smrti organismu. Díky nové metodě, již vyvinul tým Leoše Valáška z Mikrobiologického ústavu AV ČR, mohou badatelé lépe pochopit, co se děje v buňkách, které se například vlivem nemoci dostanou do stresu. V aktuálním čísle časopisu A / Věda a výzkum hovořil i o příkladné kooperaci konkurenčních laboratoří.
Stává se, že se vědec blíží k závěru objevu a zjistí, že jiný výzkumník dělá na tom samém. Může pak zvolit v zásadě dvojí přístup. Zabarikáduje se a snaží se být za každou cenu první v cíli, anebo s kolegou naváže spolupráci. Způsob, jakým se rodila nová metoda nazvaná Sel-TCP-seq, je ukázkou druhého postupu.
Leoš Valášek nedávno dostal e-mail s následující douškou: „Problém krysího závodu spočívá v tom, že i když vyhrajete, jste stále krysa.“ Leoše Valáška motto zaujalo. Připomnělo mu situaci, která předcházela otištění článku o výše zmíněné metodě v odborném časopise Molecular Cell.
Zajímavé totiž je, že na jejím vývoji ve světě pracovalo současně více týmů a tři se zhruba ve stejnou dobu pokoušely zveřejnit své výsledky právě v Molecular Cell. Místo toho, aby navzájem vedly nesmyslný boj o prvenství, vydaly se cestou spolupráce.
Obálka časopisu Molecular Cell, v němž se objevily články tří různých týmů o témže tématu.
Náhodou se přišlo na to, že kromě laboratoře Leoše Valáška se vývoji velmi podobné metody věnují také biologové v německém Heidelbergu pod vedením Aurelia Telemana. Slovo dalo slovo, oba týmy se dohodly a začaly na zveřejnění pracovat společně. Mezitím ovšem vyšlo najevo, že v čínském Sia-menu existuje další laboratoř, vedená Dieterem Wolfem, která pracuje na podobném tématu a svá zjištění už do daného časopisu poslala.
Všechny týmy se tedy spojily, aby koordinovaly společný postup. V jednom z loňských čísel Molecular Cell tak byly zveřejněny tři články od tří pracovišť – českého, německého a čínského. Došly ke shodným výsledkům.
Pochopení je základ
Metoda Sel-TCP-seq se zabývá zkoumáním jednotlivých kroků buněčné translace, například nalezením přesného začátku i konce genů, což je klíčové pro vznik proteinů neboli bílkovin. Dlouhodobým úkolem laboratoře Leoše Valáška je popsat, jak tento proces probíhá za normálních okolností ve zdravých buňkách. Poté je možné zkoumat, proč v těch nemocných něco funguje špatně.
Závadná translace přispívá k vážným chorobám, například rakovině, demenci nebo cystické fibróze. Naopak, když vše probíhá v pořádku, zásluhou proteinů, jež jsou podstatou všech živých organismů, uskutečňují se zdárně prakticky všechny procesy v buňce – růst vlasů, imunita, distribuce kyslíku v krvi a mnoho dalšího.
K pochopení práce laboratoře Leoše Valáška poslouží následující příměr. Představte si neandertálce, který by měl za úkol opravit nefunkční motor. Nemá ovšem nejmenší tušení, jaký předmět se před ním nachází. Nejprve by ho musel celý podrobně prozkoumat a zjistit, jak funguje. Teprve poté by snad mohl přijít závadě na kloub.
Leoš Valášek z Mikrobiologického ústavu AV ČR
V základním výzkumu, kterému se Leoš Valášek věnuje, se také nejdříve pokouší postihnout celou problematiku vzniku proteinů. Ve své laboratoři si spolu s kolegy klade například otázky, co se děje v buňkách, které se dostanou do stresu nebo procházejí zhoubným bujením. Buňky vědci stresují většinou teplotním šokem nebo chemicky, navodí jim pocit, že postrádají dostatečné množství základních stavebních prvků, aminokyselin.
Laboratoř Leoše Valáška se zaměřila na jeden ze zhruba 12 proteinových komplexů, které společně s ribozomem zabezpečují správný průběh translace. V lidské buňce se tento komplex, zvaný eIF3, skládá ještě z 12 podjednotek. Každá z nich má určitou funkci. Společně fungují jako „dirigent“ správného průběhu translace.
„Snažíme se popsat, jaký podíl mají jednotlivé podjednotky na celém procesu. Ukázalo se totiž, že v některých typech rakovinových buněk některé podjednotky chybějí. Nebo jich tam je naopak více, než má být. Navíc jsme zjistili, že když určitá podjednotka chybí, často dojde ke ztrátě dalších, výsledkem je pak deregulovaná syntéza proteinů,“ vysvětluje Leoš Valášek.
Buňka tak nemůže vykonávat všechny potřebné funkce a stává se pro organismus problémem. „Jsme ve fázi, kdy víme, co se v buňce stane, když některé z podjednotek chybějí, nebo je jich naopak nadbytek. Jakým způsobem to ovlivní, co vše se syntetizuje, zatím nevíme.“
Pomoc, chybí brzda!
Buňka má v sobě přirozeně zakódováno, aby zanikla, jakmile doslouží. Tím je zajištěno, že nezpůsobí žádnou škodu. Když se však nepodaří regulaci ohlídat, může se začít vytvářet spektrum proteinů, které buňce v odumření zabrání. Jako na běžícím pásu se začnou vyrábět nechtěné a třeba i vadné proteiny. Chybějící podjednotky eIF3 totiž mohou plnit funkci brzdy patologických procesů, zdravá buňka se začne transformovat ve zhoubnou. Jako by se noha snažila šlapat na pedál, ale žádný pod sebou nenašla.
Rakovinná buňka pro svoje množení potřebuje pásovou výrobu rozjet na maximální výkon. Začne proteiny podporující zhoubné bujení přímo chrlit. Proč k tomu dochází, se přesně neví. Molekulární mechanismus zatím nikdo detailně nepopsal. Pravděpodobně se nejedná o primární příčinu, ale o přímý důsledek mutace klíčových genů.
Frakcionátor umožňuje oddělit jednotlivé ribosomální podjednotky od sebe a posbírat je do separátních zkumavek.
Kromě možné podpůrné terapie onkologických onemocnění by se teoreticky daly poznatky o translaci v budoucnu využít třeba i jako pomocná léčba cystické fibrózy. U této choroby, podobně jako u řady dalších, dědičná mutace zastaví výrobu bílkoviny třeba v polovině. Jedna malá mutace v celém organismu tak způsobuje vážné onemocnění. Pokud se ji však podaří opravit, může být vyhráno.
K dalšímu výzkumu laboratoř Leoše Valáška použije zmíněnou metodu Sel-TCP-seq. Pomohou jí přitom prostředky Akademické prémie, kterou loni na podzim získal. Cílem je vytvořit seznam genů, které se syntetizují, i když by neměly, anebo se naopak nesyntetizují, byť by měly. Možná se zjistí, že 99 procent zaznamenaných změn nebude nijak rizikových. Ovšem zbývající procento může klíčovým způsobem podporovat zhoubné bujení. Podpůrná onkologická léčba může zpomalovat nežádoucí translaci díky obnovení pomyslné brzdy.
Význam metody Sel-TCP-seq potvrdilo zveřejnění v časopise Molecular Cell a koneckonců hlavně sama skutečnost, že další dvě laboratoře ve světě došly ke stejným závěrům. „Líbí se mi, když se lidé místo zbytečného soupeření navzájem dohodnou. I když přiznávám, že na začátku jsme měli určité obavy, aby další pracoviště naše zjištění nezneužila ve svůj prospěch. Nakonec se z nás ale stali kamarádi, kteří se právě teď pouští do už zcela oficiální spolupráce. A tak by to mělo být vždy. Opravdová síla vědy spočívá v úzké spolupráci,“ uzavírá Leoš Valášek.
Celý článek i další zajímavé texty najdete v časopise A / Věda a výzkum, který vydává Akademie věd ČR.
4/2020 (verze k listování)
4/2020 (verze ke stažení)
Text: Jan Klika, Divize vnějších vztahů, SSČ AV ČR
Foto: Shutterstock; archiv Molecular Cell; Jana Plavec, Divize vnějších vztahů, SSČ AV ČR
Přečtěte si také
- Jak se mozek zotavuje po mrtvici? Odpovědi přináší studie českých vědců
- Čirok produkuje unikátní pyl. Může být cestou k pěstování odolnějších plodin
- Jak opravit míchu: Kristýna Kárová zkoumá možnosti obnovy nervových buněk
- Prodělali jste černý kašel? Přihlaste se do unikátní studie českých odborníků
- Jak buňky reagují na stres? Tým zpřesnil popis vzniku protistresového proteinu
- I v oddělení biologie nádorů může být sranda, říká Veronika Vymetálková
- Vědci z Akademie věd popsali, jak fungují molekulární nůžky na stříhání RNA
- Vědci odhalili mutace, které spouštějí leukémii. Jejich objev může pomoci léčbě
- Změny v DNA a karcinogenní účinky: I to může odhalit toxikologický inkubátor
- Ječmen „live“: Češi jako první na světě umí živě sledovat dělení jeho buněk
Chemické vědy
Vědecká pracoviště
- Ústav analytické chemie AV ČR
Ústav anorganické chemie AV ČR
Ústav chemických procesů AV ČR
Ústav fyzikální chemie J. Heyrovského AV ČR
Ústav makromolekulární chemie AV ČR
Ústav organické chemie a biochemie AV ČR
Chemický výzkum navazuje na tradici vytvořenou významnými českými chemiky jako Rudolfem Brdičkou, Jaroslavem Heyrovským, Františkem Šormem či Ottou Wichterlem. V teoretické i experimentální fyzikální chemii je výzkum orientován na vybrané úseky chemické fyziky, elektrochemie a katalýzy. Anorganický výzkum je zaměřen na přípravu a charakterizaci nových sloučenin a materiálů. Výzkum v oblasti organické chemie a biochemie se soustřeďuje zejména na medicínu a biologii s cílem vytvořit nová potenciální léčiva a dále do ekologie. V oblasti makromolekulární chemie jde o přípravu a charakterizaci nových polymerů a polymerních materiálů, které lze využít v technice, v biomedicíně a ve výrobních, zejména separačních, technologiích. Analytická chemie rozvíjí separační analytické techniky, zejména kapilární mikrometod, a dále se zaměřuje na metody spektrální. Chemicko-inženýrský výzkum je orientován na vícefázové systémy, homo- a heterogenní katalýzu, termodynamiku a moderní separační metody. Sekce zahrnuje 6 ústavů s přibližně 1270 zaměstnanci, z nichž je asi 540 vědeckých pracovníků s vysokoškolským vzděláním.