Zahlavi

Srdečním buňkám někdy méně kyslíku svědčí. Umí si pak lépe poradit s infarktem

20. 01. 2025

Dlouhodobý pobyt ve vysokohorském prostředí s nízkým obsahem kyslíku pomáhá chránit srdce. Srdeční buňky v takovém prostředí aktivují proteiny, jako je například HIF-1α, které nastartují molekulární mechanismy k obraně. Tým z Fyziologického ústavu Akademie věd ČR zjistil, že přítomnost proteinu HIF-1α je klíčová pro aktivní odstraňování nefunkčních či nadbytečných mitochondrií, tj. buněčných továren na energii. Odhalil tak nový buněčný mechanismus, který pomáhá ochránit srdce před důsledky akutního infarktu myokardu.

Aby vědci tento mechanismus prozkoumali, provedli pod záštitou Národního institutu pro výzkum metabolických a kardiovaskulárních onemocnění studii s dvěma skupinami myší – běžného typu (wild-type) a se sníženou hladinou proteinu HIF-1α. Některé myši proto byly po dobu čtyř týdnů vystaveny dlouhodobému nedostatku kyslíku (chronické hypoxii), jiné žily ve standardních podmínkách. Srdce obou skupin myší byla následně vystavena ischemii a reperfuzi napodobujících proces infarktu myokardu a následného obnovení krevního průtoku.

„Zjistili jsme, že myši vystavené nízkému obsahu kyslíku měly silnější srdce, které lépe odolalo poškození, než ty, jež touto adaptací neprošly. Dále jsme prokázali, že srdeční buňky těchto myší vykazovaly zásadní změny. Aktivně odstraňovaly poškozené mitochondrie v procesu zvaném mitofagie, aby zůstaly zdravé. Tyto změny u myší se sníženou hladinou proteinu HIF-1α nenastaly,“ popisuje Petra Alánová, hlavní autorka studie z Oddělení vývojové kardiologie Fyziologického ústavu AV ČR.

Tým následně zjišťoval, zda je tento „samočistící“ proces zásadní. U některých myší proto mitofagii zablokovali, a tudíž na výhody nedošlo a srdce chráněna nebyla. Což naznačuje, že proces mitofagie je pro protektivní úlohu HIF-1α klíčový.

„Tento výzkum nám umožňuje lépe porozumět tomu, jak HIF-1α podporuje prospěšné procesy, které buňkám umožňují přežít při zvýšeném stresu. Otevírá cestu k pochopení možných mechanismů nových léčebných postupů, jež by mohly pomoci srdci lépe odolávat nedostatku kyslíku u pacientů s ischemickou chorobou srdeční,“ uzavírá Petra Alánová.

Kontakt:

RNDr. Petra Alánová, Ph.D.
Fyziologický ústav AV ČR
Národní institut pro výzkum metabolických a kardiovaskulárních onemocnění
petra.alanova@fgu.cas.cz

Reference: Alanova P. et al.: HIF-1α limits myocardial infarction by promoting mitophagy in mouse hearts adapted to chronic hypoxia. Acta Physiol (Oxf). 2024 Sep;240(9):e14202. doi: 10.1111/apha.14202.

TZ ke stažení zde.

Chemické vědy

Vědecká pracoviště

Chemický výzkum navazuje na tradici vytvořenou významnými českými chemiky jako Rudolfem Brdičkou, Jaroslavem Heyrovským, Františkem Šormem či Ottou Wichterlem. V teoretické i experimentální fyzikální chemii je výzkum orientován na vybrané úseky chemické fyziky, elektrochemie a katalýzy. Anorganický výzkum je zaměřen na přípravu a charakterizaci nových sloučenin a materiálů. Výzkum v oblasti organické chemie a biochemie se soustřeďuje zejména na medicínu a biologii s cílem vytvořit nová potenciální léčiva a dále do ekologie. V oblasti makromolekulární chemie jde o přípravu a charakterizaci nových polymerů a polymerních materiálů, které lze využít v technice, v biomedicíně a ve výrobních, zejména separačních, technologiích. Analytická chemie rozvíjí separační analytické techniky, zejména kapilární mikrometod, a dále se zaměřuje na metody spektrální. Chemicko-inženýrský výzkum je orientován na vícefázové systémy, homo- a heterogenní katalýzu, termodynamiku a moderní separační metody. Sekce zahrnuje 6 ústavů s přibližně 1270 zaměstnanci, z nichž je asi 540 vědeckých pracovníků s vysokoškolským vzděláním.

Všechny výzkumné sekce