Čeští vědci odhalili π-díru v molekulách, potvrdili tak dekády známou teorii
29. 08. 2023
Skvělý kousek se podařil vědcům z Ústavu organické chemie a biochemie AV ČR, Fyzikálního ústavu AV ČR a Univerzity Palackého v Olomouci. S využitím pokročilé metody rastrovací mikroskopie pohlédli dovnitř molekuly až na strukturu elektronového obalu atomu. Experimentem přitom potvrdili – jako první na světě – nerovnoměrné rozložení elektronové hustoty v aromatických molekulách a existenci tzv. pí-díry (π-díry). Článek o výzkumu aktuálně zveřejnil vědecký časopis Nature Communications.
Vědci se při experimentech zaměřili na aromatické uhlovodíky. Antracen, benzen, naftalen a další aromatické molekuly mají takzvané pí elektrony umístěné nad a pod uhlíkovým skeletem. „Jestliže ale vodíky u aromatických molekul nahradíme skupinami, které odtahují elektrony, například halogeny, elektrony se lokalizují na periferních halogenech a nad a pod molekulou je to, co se anglicky nazývá pi-hole, tedy pí-díra,“ vysvětluje Pavel Hobza z Ústavu organické chemie a biochemie AV ČR.
Aromatickou molekulu přirovnává k sopce s krásným vrcholem. Když sopka vybuchne, objeví se pod ní obrovský kráter, a to je ona pí-díra. Více Pavel Hobza vysvětluje v následujícím videu:
Výsledky tohoto výzkumu na submolekulární úrovni je možné přirovnat k objevu vesmírných černých děr. I s nimi totiž desítky let počítala teorie, než jejich existenci potvrdil experiment. Stejný autorský tým zaznamenal velký úspěch už s předešlým objevem, který jim v roce 2021 otiskl odborný časopis Science. V něm prokázali existenci tzv. sigma-díry (σ-díry).
„Potvrzení existence π-díry stejně jako před tím σ-díry plně dokládá, jak kvalitní jsou teoretické předpovědi kvantové chemie, které s oběma jevy počítají už celá desetiletí. Ukazuje se, že se na ně lze spolehnout i v případě, kdy chybí dostupný experiment,“ říká Pavel Hobza.
Unikátní mikroskopy
Jmenované objevy se podařily mimo jiné díky unikátní rastrovací mikroskopii, která je k dispozici v Českém institutu výzkumu a pokročilých technologií UPOL (CATRIN). „Díky našim předchozím zkušenostem s technikou silové mikroskopie s Kelvinovou sondou s funkcionalizovanými hroty jsme byli schopni naše měření zpřesnit a získat velmi kompletní soubory dat, které nám pomohly prohloubit naše znalosti nejen o tom, jak je v molekulách rozložen náboj, ale také o tom, jaké pozorovatelné údaje se touto technikou získávají,“ popisuje vedoucí vědecké skupiny z institutu CATRIN Bruno de la Torre.
Lepší znalost rozložení elektronového náboje může pomoci pochopit řadu chemických i biologických procesů. V praktické rovině se promítne do schopnosti stavět nové supramolekuly a následně ve vývoji moderních nanomateriálů s vylepšenými vlastnostmi.
Čtěte také:
Čeští vědci poprvé pozorovali sigma-díry. Potvrdili tak 30 let starou teorii
Díky novému objevu týmu Pavla Hobzy by se mohly přepisovat učebnice chemie
Text: Leona Matušková, Divize vnějších vztahů SSČ AV ČR, s využitím tiskové zprávy Ústavu organické chemie a biochemie AV ČR.
Foto: Shutterstock (ilustrační foto aromatických uhlovodíků)
Přečtěte si také
- Čeští vědci spolupracují na vývoji ekologických a levných solárních článků
- Nebezpečné látky obsažené v náplních elektronických cigaret poškozují plíce
- Nový vodíkový elektrolyzér ukládá energii z obnovitelných zdrojů
- Chemičkou jsem se chtěla stát už od čtrnácti let, říká Adéla Šimková
- Vědci vyvinuli novou kontrastní látku, která pomůže včas odhalit skryté nemoci
- Rostliny v sobě mají neuvěřitelné chemické bohatství, říká Tomáš Pluskal
- Krotitelé molekul: vědci objevili, jak zvýšit kapacitu molekulárních čipů
- Od vynálezu k praxi. Firma vyzkouší metodu jednodušší výroby metanolu
- Badatelé představili 3D materiály pro rekonstrukční a plastickou chirurgii
- Proč se Země a Venuše vyvinuly odlišně? Napoví mise, jíž se účastní i Češi
Matematika, fyzika a informatika
Vědecká pracoviště
- Astronomický ústav AV ČR
Fyzikální ústav AV ČR
Matematický ústav AV ČR
Ústav informatiky AV ČR
Ústav jaderné fyziky AV ČR
Ústav teorie informace a automatizace AV ČR
Fyzikální výzkum pokrývá široké spektrum problémů, od základních složek hmoty a fundamentálních přírodních zákonů, zahrnující i zpracování dat z velkých urychlovačů, až po fyziku plazmatu při vysokých tlacích a teplotách, fyziku pevných látek, nelineární optiku a jadernou fyziku nízkých a středních energií. Astrofyzikální výzkum se soustřeďuje na výzkum Slunce – především erupcí, na dynamiku těles slunečního systému a na vznik hvězd a galaxií. V matematice a informatice se studují jak vysoce abstraktní disciplíny jako logika a topologie, tak i statistické metody a diferenciální rovnice a jejich numerická řešení. Přitom i čistě teoretické výzkumy v oblastech, jakou jsou např. neuronové sítě, optimalizace a numerické modelování, bývají často motivovány konkrétními problémy nejen v přírodních vědách. Sekce zahrnuje 6 ústavů s přibližně 1600 zaměstnanci, z nichž je asi 630 vědeckých pracovníků s vysokoškolským vzděláním.