Ječmen „live“: Češi jako první na světě umí živě sledovat dělení jeho buněk
09. 10. 2023
Osmdesát minut. Přibližně tak dlouho trvá buněčné dělení ječmene. I tuto dosud neznámou informaci světu přinesl výzkum rostlinných genetiků z Ústavu experimentální botaniky AV ČR. Vyvinuli totiž unikátní nástroj, který umožňuje sledování procesů množení buněk této rostliny. A to v reálném čase. O objevu, který usnadní šlechtění obilovin, informuje vědecký časopis The Plant Journal.
Jde o klasickou českou plodinu a její výhodou jsou velké chromozomy. Z těchto důvodů si vědci z olomouckého Centra strukturní a funkční genomiky Ústavu experimentální botaniky AV ČR zvolili jako modelovou rostlinu pro své bádání právě ječmen. A měli šťastnou ruku: jako první na světě dokázali pod mikroskopem živě sledovat jeho buněčné dělení. Tímto způsobem přitom bylo dosud možné studovat pouze neživé vzorky rostlinných pletiv.
„Nyní můžeme například měřit některé procesy při množení buněk. Víme také, kde se konkrétní buňka nachází, v jaké pozici je vůči buňkám okolním a dokážeme sledovat i jejich vzájemné interakce,“ líčí vedoucí výzkumné skupiny Centra strukturní a funkční genomiky Ústavu experimentální botaniky AV ČR Aleš Pečinka.
Vedoucí výzkumné skupiny Centra strukturní a funkční genomiky Ústavu experimentální botaniky AV ČR Aleš Pečinka
Objev, na kterém experti z Akademie věd ČR spolupracovali s týmy z Univerzity Palackého v Olomouci, pomůže badatelům zjistit, jak ječmen reaguje na různé stresové podněty, což přispěje ke šlechtění odolnějších a výnosnějších odrůd obilovin.
Hra s barvami
Aby vědci mohli do procesu dělení nahlédnout na vlastní oči, museli nejprve upravit rostliny tak, aby některé části jejich buněčného jádra pod mikroskopem svítily.
„Pomocí metod genového inženýrství jsme na vybrané buněčné struktury navázali zeleně, červeně, modře nebo žlutě svítící protein. Takto jsme v buňce označili chromozomy, jadérka a mikrotubuly,“ vysvětluje Kateřina Kaduchová z Ústavu experimentální botaniky AV ČR.
Badatelé se během náročného výzkumu, který jim zabral čtyři roky, zaměřili na rostoucí kořínky mladých naklíčených dvoudenních rostlinek ječmene. V nich totiž buněčné dělení probíhá nejčastěji.
Neposedné kořínky
Kořínky ječmene ale odrůstají velmi rychle, a zaostřit mikroskop do hlubších vrstev jejich buněk je tak skutečný oříšek. I ten však olomoučtí vědci rozlouskli. Vyvinuli totiž vlastní systém na usměrnění růstu kořenů v mikroskopu.
Modro-žlutá buněčná jádra v živých koříncích ječmene
„Hodně času zabralo nastavení celého experimentu, protože dělení buněk je rychlé a neodehrává se ve stejném čase. Snažili jsme se tedy nasnímat několik fází dělení buňky a měření jsme museli dělat opakovaně,“ poukazuje Kateřina Kaduchová, která během práce na projektu strávila u konfokálního mikroskopu, jenž buňku dokáže zvětšit 630×, celé stovky hodin.
A mělo to smysl. Nová studie totiž výrazně posouvá hranice dosavadních znalostí a otevírá další možnosti výzkumu ječmene. „Například u chromozomů se vědělo, že se v průběhu střední fáze buněčného dělení zkracují. Díky našemu objevu jsme mohli změřit jejich délku také u dřívějších a pozdějších fází dělení,“ říká Aleš Pečinka.
Teď už tak badatelé vědí, že zkracování pokračuje až do poslední fáze dělení buňky, kdy se chromozomy obalí jadernou membránou a proces vzniku dceřiných buněk je dokončen vytvořením buněčné stěny.
Kateřina Kaduchová z Ústavu experimentální botaniky AV ČR u mikroskopu
Nástroj pro všechny
Zásluhou olomouckých expertů tak vznikla platforma pro studium vlivu různých růstových podmínek na dělení buněk u ječmene, kterou může využívat vědecká komunita po celém světě.
„Do budoucna mohou vědci díky tomuto nástroji hodnotit vliv různých podmínek na růst obilovin, což je v době, kdy řešíme vliv klimatické změny na růst a výnos plodin a také zajištění dostatku potravin pro stoupající světovou populaci, klíčové,“ dodává Jan Bartoš, vedoucí olomouckého pracoviště Ústavu experimentální botaniky AV ČR.
Ječmen bude tamní vědce zajímat i nadále. Jen se na dynamiku a chování buněk při dělení podívají z jiné perspektivy, aby zjistili třeba to, jak se v průběhu buněčného dělení chová jaderná membrána. Nebo jaký vliv budou mít na množení buněk různé stresové faktory a cizorodé látky.
Připravila: Radka Římanová, Divize vnějších vztahů SSČ AV ČR, s využitím tiskové zprávy AV ČR
Foto: Shutterstock; Jana Plavec, Divize vnějších vztahů SSČ AV ČR; Ústav experimentální botaniky AV ČR
Přečtěte si také
- Jak se mozek zotavuje po mrtvici? Odpovědi přináší studie českých vědců
- Čirok produkuje unikátní pyl. Může být cestou k pěstování odolnějších plodin
- Jak opravit míchu: Kristýna Kárová zkoumá možnosti obnovy nervových buněk
- Prodělali jste černý kašel? Přihlaste se do unikátní studie českých odborníků
- Jak buňky reagují na stres? Tým zpřesnil popis vzniku protistresového proteinu
- I v oddělení biologie nádorů může být sranda, říká Veronika Vymetálková
- Vědci z Akademie věd popsali, jak fungují molekulární nůžky na stříhání RNA
- Vědci odhalili mutace, které spouštějí leukémii. Jejich objev může pomoci léčbě
- Změny v DNA a karcinogenní účinky: I to může odhalit toxikologický inkubátor
- Ohrožená ňadra: vědci popsali rizikové varianty genu způsobujícího karcinom prsu
Matematika, fyzika a informatika
Vědecká pracoviště
- Astronomický ústav AV ČR
Fyzikální ústav AV ČR
Matematický ústav AV ČR
Ústav informatiky AV ČR
Ústav jaderné fyziky AV ČR
Ústav teorie informace a automatizace AV ČR
Fyzikální výzkum pokrývá široké spektrum problémů, od základních složek hmoty a fundamentálních přírodních zákonů, zahrnující i zpracování dat z velkých urychlovačů, až po fyziku plazmatu při vysokých tlacích a teplotách, fyziku pevných látek, nelineární optiku a jadernou fyziku nízkých a středních energií. Astrofyzikální výzkum se soustřeďuje na výzkum Slunce – především erupcí, na dynamiku těles slunečního systému a na vznik hvězd a galaxií. V matematice a informatice se studují jak vysoce abstraktní disciplíny jako logika a topologie, tak i statistické metody a diferenciální rovnice a jejich numerická řešení. Přitom i čistě teoretické výzkumy v oblastech, jakou jsou např. neuronové sítě, optimalizace a numerické modelování, bývají často motivovány konkrétními problémy nejen v přírodních vědách. Sekce zahrnuje 6 ústavů s přibližně 1600 zaměstnanci, z nichž je asi 630 vědeckých pracovníků s vysokoškolským vzděláním.